Q.P. Code: 19ME0314

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech III Year I Semester Regular Examinations December-2021 THERMAL ENGINEERING

(Mechanical Engineering)

Time: 3 hours

volume.

Max. Marks: 60

R19

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1	a	Explain	the	working	principle	of	single	stag	ge sin	gle	acting	recip	procating	L2	6M
		compres	sor.												
	b	Mention	sing	le stage	compressor	· eq	juation	for	work	by	neglecti	ing c	learance	L2	6M

OR

2 a	a	Construct an expression for minimum work required for two stage reciprocating	L3	6M		
	compressor with perfect inter-cooling by neglecting clearance volume.					

b Explain the working of roots blower compressor with neat sketch. L2 6M

UNIT-II

3 A gas turbine unit receives air at 100 kPa and 300 K and compresses it adiabatically to 620 kPa with efficiency of the compressor 88%. The fuel has a heating value of 44180KJ/Kg and the Fuel/air ratio is 0.017 kg fuel /kg air. The turbine internal efficiency is 90%. Calculate the Compressor work, turbine work and thermal efficiency. Take Cp= 1.005KJ/Kg K.

OR

4	a	Explain the types of gas turbine power plant.	L2	6M			
	b	Explain the efficiency improvement methods of gas turbine.	L2	6M			
		UNIT-III	·				
5	De sk	efine Steam nozzle and also explain about expansion of steam in nozzle with neat etch.	L1	12M			
OR							
6	a	Explain what is meant by critical pressure ratio of a nozzle.	L2	6M			
	b	The dry sat steam at a pressure of 5 bar is expanded is entropically in nozzle to a	L3	6M			
		pressure of 0.2 bar. Find the velocity of steam during the nozzle.					
		UNIT-IV					
7	9	Explain the working process of reaction turbine	L2	6M			
'	h	Show the velocity triangle diagram of reaction turbine.	LZ	6M			
	N	OR		UII			
8	a	Explain the working process of impulse turbine.	L2	6M			
	b	What are the methods of steam turbine governing?	J.1	6M			
		UNIT-V					
9	a	Explain engine, heat engine and applications of IC engines.	L2	6M			
	b	With a neat sketch explain any three parts in Internal Combustion engine.	L2	6M			
		OR					
10	a	Explain any six classifications of Internal Combustion engines.	L2	6M			
	b	Show the theoretical and actual valve-timing diagram for Diesel engine. *** END ***	L2	6M			